EARTHMAT DESIGN 132KV SUBSTATION EASY EXPLANATION

Design Parameters for EARTHMAT DESIGN 132 KV

Reference Standard          IEEE – 80 – 2000

Resistivity Data for EARTHMAT DESIGN 132 KV SS

Soil Resistivity, ρ = 90 Ω m

Surface layer resistivity, ρs = 3000 Ω m

Surface layer thickness, hs=0.10 m

Reflection factor between different resistivities                                                                                                                   

                                                K         =          (ρ – ρs) /( ρ+ ρs)                                 

                                                            =          -0.941747573                                                                                     

Surface layer derating factor, Cs        =          1-(0.09*(1-ρ/ρs))/(2*hs+0.09)                       

                                                            =          0.698965517                                      

System Data for EARTHMAT DESIGN 132 KV SS                              

Decrement factor for determining IG, Df = 1                                                                     

Fault current division factor (split factor), Sf = 0.5

Maximum Fault current in the system, IF = 31.5KA =31500 A                                                                                                                                            

Maximum grid current that flows between ground grid and surrounding earth (including dc offset)                           IG        = DF x SF xIF   =1 x 0.5 x 31500 = 15750 A                    

Duration of fault current for sizing ground conductor           tc = 1s

Duration of fault current for determining decrement factor, tf = 0.05s  

Duration of shock for determining allowable body current, ts = 1s                               

Conductor Data for the EARTHMAT DESIGN 132KV SS                                     

Specific heat of MS rod/ Flat, SH = 0.114   Kcal/kg

Specific weight of MS rod/ Flat, SW = 7.86     gm/cc                         

Therefore, TCAP = 4.186 * SH * SW = 3.750 J/(cm3 ·°C)

Co-efficient of linear expansion at 20 deg C of MS rod/ Flat, αr =0.00423 /°C)    

Resistivity of MS Rod/ Flat. Pr = 15 micro ohm-m           

Reference temperature, Tr = 20° C      

Maximum temperature, Tm = 620° C                              

Ambient temperature, Ta = 50° C      

Ko = 1/αo or (1/αr) – Tr in °C = 1/.00423 – 20 = 216.4

Therefore, Area of the Conductor, A =[\frac{10^{-3}}{\sqrt{\frac{TCAP \times 10^{-4}}{t_c \alpha_r \rho_r}} \ln\left(\frac{K_0 + T_m}{K_0 - T_a}\right)}]= 680.851 sqmm

the required dia is =[ \sqrt{\frac{4A}{\pi}}] = 29.4 mm

EARTHMAT DESIGN 132

Corrosion Allowance 

(Reference IEEE Transaction of Power Apparatus & System Vol.PAS-98,No.6 Nov. 1979)                          

For First 12 Years   = 0.1291 mm/yr.                                               

For Next 12 Years  = 0.0646 mm/yr.                                               

Only negligible corrosion is found to take place in the initial earthmat design 132KV SS thereafter.                                                                                                 

Total Corrosion  (0.1291x 12 + 0.0646x 12 ) =2.32 mm in the diameter     

Taking it as =2.5 mm in the diameter       

So the conductor size is = 29.4+2.5 =31.9 mm

Considering the Sub-soil ground rod conductor of size D =  40 mm                        

And size of the grid flat conductor = 75 x 8 mm                                                                              

Grid Data for earthmat design 132KV SS                                                       

Total area enclosed by ground grid, A = 8256    m²                       

Spacing between parallel conductors, D = 5 m

Depth of ground grid conductors, h = 0.6 m                       

Reference depth of grid, h0 = 1 m           

Total no of parallel conductors in x direction = 96/5 = 19.2                         

Total no of parallel conductors in Y direction = 86/5 = 17.2                                    

Maximum length of grid conductors in X direction, Lx = 96 m

Maximum length of grid conductors in Y direction, Ly = 86 m

Maximum distance between any two points on the grid, Dm = 96 m                       

Total length of grid conductor , Lc = 3322.4 m                           

Peripheral length of grid, Lp = 2*(86+96) = 364 m                                                        

LC = 19.2 * 86 +17.2 * 96 =3302.4 m                                          

Length of ground rod at each location, Lr = 3 m           

Number of rods placed in area A, nR = 226 Nos.                                                    

Total length of ground rods, LR = nR*Lr  = 678 m                                                                                                                    

Total effective length of grounding system conductor, including grid and ground rods, LT= Lc+LR = 3302.4+678 = 3980.4 m        

Calculation of effective length of Lc + LR for mesh voltage                                                          

Effective length of Lc + LR for mesh voltage for grids with ground rods in the corners, as well as along the perimeter and throughout the grid, the effective burried length is  [L_M = L_C + \left[1.55 + 1.22 \left(\frac{L_r}{\sqrt{L_x^2 + L_y^2}}\right)\right] L_R] 

[L_M = 3302.4 + \left[1.55 + 1.22 \left(\frac{3}{\sqrt{96^2 + 86^2}}\right)\right] 678]                                          

                     = 4372.56                               

Calculation of effective length of Lc + LR for step voltage

Effective length of Lc + LR for step voltage                                                                                                                        

LS = 0.75*Lc+0.85*LR = 0.75*3302.4+0.85*678 = 3053.1m                                                                                             

Geometry of earthmat design of 132KV SS  = Rectangular                                                                     

Geometric factor   na  =  2*Lc/Lp = 2* 3302.4/364 = 18.15

                                           nb =[\sqrt{\frac{L_p}{4\sqrt{A}}}]=[\sqrt{\frac{364}{4\sqrt{8256}}}]  =1.001

                                                nc        =\left[\frac{L_x L_y}{A}\right]^{\frac{0.7A}{L_x L_y}}                                  

                                                            =          1, since rectangular

                                                nd        =  \frac{D_m}{\sqrt{L_x^2 + L_y^2}}                         =1( because of square, rectangular, l shaped)                                                                      

            Geometric factor composed of factors na, nb, nc and nd                                                                                                                              

                                                n = na*nb*nc*nd 

                                                   =  18.15                                                                          

Factors in the calculation of step and touch voltages of earthmat design 132KV SS                                                  

Corrective weighting factor that emphasizes the effects of grid depth, simplified method                                                                                                                                   

                                                Kh       =     [\sqrt{1 + \frac{h}{h_0}}]                           

                                                            =  \sqrt{1 + \frac{0.6}{1}}                                                                             

                                                            =          1.26                                                                

            Correction factor for grid geometry, simplified method                                                                                                                               

                                                Ki =  0.644+0.148*n                                                           

                                                     = 0.644+0.148*18.15                                                    

                                                     = 3.330                                                              

Corrective weighting factor that adjusts for the effects of inner conductors on the corner mesh, for earthmat design 132KV SS                                                                                                                               

For, grid with ground rods along the perimeter, or for grids with ground rods in the grid corners as well as both along the perimeter and throughout the grid area.                                                                                                                   

                                                Kii       =          1                                                                     

            Spacing factor for step voltage, simplified method                                                                                                                          

                                                Ks        =   \frac{1}{\pi}\left[\frac{1}{2}h + \frac{1}{D+h} + \frac{1}{D} \left(1 - 0.5^{(n-2)}\right)\right]                              

                                                            =     \frac{1}{\pi} \left[ \frac{1}{2 \times 0.6} + \frac{1}{5 + 0.6} + \frac{1}{5} \left( 1 - 0.5^{(18.25 - 2)} \right) \right]                                                                

                                                            =          0.322                                                  

            Geometrical factor for mesh voltage simplified method                                                                                                                               

                                                Km      =\frac{1}{2\pi} \left[ \frac{\ln D^2}{16hd} + \frac{(D + 2h)^2}{8Dd} - \frac{h}{4d} \right] + \frac{K_{ii}}{K_h} \ln\left(\frac{8}{\pi(2n - 1)}\right)                                 

                                                =   \frac{1}{2\pi} \left[ \frac{\ln(5^2)}{16 \times 0.6 \times 0.040} + \frac{(5 + 2 \times 0.6)^2}{8 \times 5 \times 0.040} - \frac{0.6}{4 \times 0.040} \right] + \frac{1}{1.26} \ln\left(\frac{8}{3.14 \times (2 \times 18.15 - 1)}\right)                                                      

                                                            =          0.3773                                                

Resistance of grounding system                                                                                                                                            

                                                Rg       =      \rho \left[ \frac{1}{L_T} + \frac{1}{\sqrt{20A}} \left(1 + \frac{1}{1 + h\sqrt{\frac{20}{A}}}\right) \right]                               

                                                            =      90 \left[ \frac{1}{3980.4} + \frac{1}{\sqrt{20 \times 8256}} \left(1 + \frac{1}{1 + 0.6\sqrt{\frac{20}{8256}}}\right) \right]                                                                           

                                                            = 0.43                                                                

Grid Potential Rise,               GPR    = IG*Rg                         

                                                            = 15750*0.43                                                    

                                                             = 6867V                                                            

Allowable Step and Touch Voltage                       

Tolerable step voltage for human with 50 kg body weight                                                                                                                           

Estep50           =    \frac{(1000 + 6C_s \rho_s) \cdot 0.116}{\sqrt{t_s}}     

                        =    \frac{(1000 + 6 \times 0.698 \times 3000) \cdot 0.116}{\sqrt{1}}          

                        =          1573.424                                                                                                                                            

            Tolerable step voltage for human with 70 kg body weight                                                                                                                           

                                                Estep70           =    \frac{(1000 + 6C_s \rho_s) \cdot 0.157}{\sqrt{t_s}}     

                                                                        =\frac{(1000 + 6 \times 0.698 \times 3000) \cdot 0.157}{\sqrt{1}}

                                                                        = 2129.548                                                                 

            Tolerable touch voltage for human with 50 kg body weight                                                                                                                         

                                                Etouch50         =    \frac{(1000 + 1.5C_s \rho_s) \cdot 0.116}{\sqrt{t_s}}               

                                                                        = \frac{(1000 + 1.5 \times 0.698 \times 3000) \cdot 0.116}{\sqrt{1}}

                                                                        = 480.356                                                                   

            Tolerable touch voltage for human with 70 kg body weight                                                                                                                         

                                                Etouch70         =    \frac{(1000 + 1.5C_s \rho_s) \cdot 0.157}{\sqrt{t_s}}     

                                                                        =   \frac{(1000 + 1.5 \times 0.698 \times 3000) \cdot 0.157}{\sqrt{1}}                     

                                                                        = 650.137                                                                   

Calculated Step and Touch Voltage                 

Mesh voltage at the center of the corner mesh for the simplified method                                        

                                                   Em   =    \frac{\rho \times K_m \times K_i \times I_G}{L_M}                       

                                                            =      \frac{90 \times 0.3773 \times 3.335 \times 15750}{4372.56}                                                      

                                                            =          407.3 V                      

Step voltage between a point above the outer corner of the grid and a point 1 m diagonally outside the grid for the simplified method                                                                                                                                  

                                                Es        =   \frac{\rho \times K_s \times K_i \times I_G}{L_S}                                                 

                                                            =    \frac{90 \times 0.322 \times 3.335 \times 15750}{3068.1}                                                                     

                                                            =          496.14 V                    

Since the attainable mesh and step voltages are below all the tolerable touch and step voltage, the design is safe.                             

This article is a part of the Safety and Earthing page, where other articles related to topic are discussed in details.

Leave a Comment